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Figure 1: SottoVoce silent voice system: an ultrasonic echo probe attached under the jaw that reads the internal situation
while the user is speaking without actually emitting a voice. By recognizing ultrasound images using deep convolutional
neural networks, the user’s voice is resynthesized and can be used to control the existing speech interaction systems such as
smart speakers.

ABSTRACT
The availability of digital devices operated by voice is expand-
ing rapidly. However, the applications of voice interfaces are
still restricted. For example, speaking in public places be-
comes an annoyance to the surrounding people, and secret
information should not be uttered. Environmental noise may
reduce the accuracy of speech recognition. To address these
limitations, a system to detect a user’s unvoiced utterance
is proposed. From internal information observed by an ul-
trasonic imaging sensor attached to the underside of the
jaw, our proposed system recognizes the utterance contents
without the user’s uttering voice. Our proposed deep neural
network model is used to obtain acoustic features from a
sequence of ultrasound images. We confirmed that audio sig-
nals generated by our system can control the existing smart
speakers. We also observed that a user can adjust their oral
movement to learn and improve the accuracy of their voice
recognition.
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1 INTRODUCTION
Smart devices that are controllable by speech (i.e., speech
interaction) are being used in many situations. Smartphones,
smart speakers, car-navigation systems, and various home
appliances can be controlled by speech and have presented
many interactive potentials [47]. Speech interaction does not
require visual attention, and it can be used in a dark envi-
ronment such as a bedroom. Owing to the recent progress of
speech-recognition technology and the naturalness of speech
synthesis, speech interaction is becoming an irreplaceable
process in human–computer interaction. Speech can also
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be used while the user of a speech-interaction device is per-
forming other tasks, such as driving, cooking, homeworking,
or using a traditional personal computer. For example, while
the user is concentrating on a computer-screen and interac-
tion devices such as a keyboard and a mouse, they can still
operate other devices with voice interaction.

However, as for the speech interface, two challenges must
be overcome. First, using the interface in public places presents
limitations. In addition to being an annoyance to the sur-
rounding people, disclosing personal information or secret
information by uttering it in public is risky in terms of infor-
mation security. Next, it cannot be used in a noisy environ-
ment, because the accuracy of speech recognition may be
declined. These issues are particularly acute when trying to
use a speech interface to interact with wearables or mobile
computers.

To overcome these challenges, research on “silent-speech
recognition” has been conducted [8]. For example, by apply-
ing a method known as lip reading, images of the mouth
of the speaker or the entire face are captured by a camera,
and the content of the utterance is estimated from those
images [52]. If the user could simply mouth the utterance
without actually voicing it, it would be possible to use such
a voice interaction in public places. However, with the cam-
era method, it is necessary to install a camera in front of
the face, and its form factor renders it unsuitable for wear-
ables or mobile applications. Other approaches of the studies
on “non-audible murmur” (NAM) [22, 42] attempts to rec-
ognize utterances with a microphone or an accelerometer
worn on the skin or throat of the user. In this case, the user
speaks with articulated respiratory sound without vocal-fold
vibration (namely, whispering). However, to be recognized
accurately by the system, a user’s whispering voice tends
to be noticeable by other people nearby. Furthermore, some
studies attempt to estimate speech by estimating the move-
ment of muscles near the oral cavity by electromyography
(EMG) [33, 49]. However, the estimation of free utterances
with EMG is still difficult; instead, it is a type of gesture
recognition using the movement of the oral cavity. Thus, the
number of detectable commands is limited, and the user has
to learn new gesture skills instead of using their existing
speaking skills.
Instead of using the above-described approaches, we fo-

cus on using ultrasonic imaging [11]. Ultrasonic-imaging
technology recognizes the internal status in the body by
measuring the reflection time of ultrasonic waves radiated
into the body. This technology is widely used to grasp the
condition of the internal organs for medical purposes. In re-
cent years, small and lightweight systems that can be directly
connected to smartphones (e.g., Vscan Extend, General Elec-
tronic Company) have appeared. If it were possible to attach
a small ultrasonic imaging head around the neck to sense

the situation in the oral cavity and convert it to acoustic
information, it would be a useful device for communicat-
ing with speech-capable devices without actually speaking
aloud; namely, “silent voice interaction” would be possible.
Silent voice interaction by ultrasonic imaging demon-

strates two potential advantages over other approaches. First,
the ultrasonic-imaging head can be miniaturized, and it can
constitute a device with an inconspicuous shape such as a col-
lar. It would be an important feature for designing wearable
silent-voice systems. Next, by recognizing the situation in
the oral cavity, it would be possible to measure themovement
of the tongue, which cannot be observed from the outside. It
would thus be possible to reproduce sound more accurately.

Studies have been conducted on silent speech using ultra-
sound imaging, but many of them are used in combinations
with lip or face images; therefore, a camera must be placed
in front of the user [26]. This configuration presents a limi-
tation when it is used as a wearable interface device. Recent
researchers have challenged to use deep neural networks
with ultrasound imaging for silent speech [7, 51]; however,
they are not based on convolutional neural networks and are
not validated with data retrieved from a mouth movement
without speaking. They are only validated with mouth move-
ment when a user is actually emitting a voice. We present a
significant step forward using convolutional neural networks
and proof-of-concept validations via actual silent speech, in-
teracting with an unchanged smart speaker (Amazon Alexa).

Herein, a silent-voice interaction system-called “SottoVoce”
based only on ultrasonic images is described (Figure 1). By
combining two types of deep neural networks, this system
can be trained to generate voice signals from a sequence
of images captured from an ultrasonic-imaging device. Our
contributions can be summarized as the following two topics:

• A two-level model of deep convolutional neural net-
works to convert ultrasonic images to actual sounds is
proposed.

• As a proof of concept, a silent-voice system was devel-
oped, and it was shown that the system could control
a voice-controlled device (in this case, Amazon Echo)
without modifications.

2 RELATEDWORK
Silent Speech
Silent-speech interfaces have been studied using various
technologies and methods [8, 31]. Lip reading [52] or facial
images [12] can be used to estimate speech uttered by a
subject without using audio information.

SilentVoice [17] is an ingressive speech approach that cap-
tures extremely soft speech. Electromagnetic articulogra-
phy (EMA) has been used to develop brain–computer inter-
faces [5] and other interactive applications [53]. Magnets



can be attached to the subject to detect silent speech [14,
19, 23]. Electroencephalogram (EEG) [44] and Electromyo-
graphy (EMG) [37, 49] are also typical methods for silent-
speech recognition. Particularly, EMG has been applied for
interactive purposes and applications concerning human–
computer interaction (HCI) [38]; for example, controlling
a web browser [32]. A recent example proposed by Kapur
et al. [33] used multiple electrodes to sense neuromuscular
signals of a subject in an internal speech. In addition to the
methods introduced above, other human–facial electrical
potentials have been combined and measured [22, 48].
Ultrasound imaging has also been used for silent-speech

recognition in the field of speech processing [9, 27]. In one
study, which focused on singing, sung vowels could be syn-
thesized based on the ultrasound and video of the lips [30].
In a similar study, a silent-speech interface using ultrasound
and optical images of the tongue and lips was developed [26,
28]. In another study, a mapping technique for automatically
generating animations of the tongue movement from raw
ultrasound images was created [13].

Other approaches combine the techniques described above
with deep neural networks, such as BCI applications [4],
myoelectric signals [10], and lip reading with long short-
termmemory (LSTM) [52]. Combining deep neural networks
and ultrasound imaging for silent-speech interfaces has also
been considered. For example, ultrasound imaging was used
to capture the tongue movement with such a combination
with deep neural networks [7]. Moreover, the fundamental
frequency (F0) curve, which had been considered unpre-
dictable, was estimated using a deep neural network [21].
In addition, it has been suggested that a global and visuo–
acoustic modeling approach called “Eigentongues” performs
better than tongue-contour modeling when using neural
networks [25]. A new benchmark for silent-speech research
based on deep neural networks has also been proposed [31].
These approaches are still at the basic proof-of-concept level,
and none have been evaluated in terms of controlling the ex-
isting speech-interaction appliances such as smart speakers.
Following the prior approaches described above, we aim

to develop a system that allows silent speech to interact
with voice-controlled devices and interactive purposes in a
HCI context. Furthermore, to improve the performance of the
developed system, we aim for the interaction between human
and artificial neural networks for performance improvement.

Non-Auditory Inputs and Interaction
EarFieldSensing [39] is a gesture-recognition technology
based on electric-field sensing. CanalSense [3] senses changes
in air pressure in the ear canals that occur when the face is
moved. Tongue-in-Cheek [18] senses the movement of the
tongue using the X-band Doppler radar for facial–gesture

recognition. Other methods that use EMG [55] or combina-
tions of brain and muscle signal sensing [43] are also notable.

The techniques above have been utilized for arm-gesture
recognition; however, an approach using ultrasound imaging
for that purpose has been demonstrated, i.e., EchoFlex [40].
It is an interaction sensor that recognizes movements of the
forearm muscle using ultrasound imaging. The results of
that study indicated that the sensor performed well and can
potentially be supplanted to other prior approaches. They
also inspired the authors to consider using ultrasound imag-
ing for silent-voice interaction using the inner part of the
mouth.

Interacting with Smart Devices
Owing to the development of mobile and smart devices, we
can now interact with them frequently through variousmeth-
ods [35]. We may use our voice as an input method [47], and
studies to overcome issues concerning such voice-controlled
user interfaces have been presented [41]. One typical inter-
face (a personal “agent” hereafter) is Amazon Echo, typically
known as “Alexa,” with which people can communicate and
chat. The effect of this agent on people has been researched
extensively, and the results show that it is an effective agent
for satisfying or influencing our lives [36, 45, 50].
The role of artificial intelligence (AI) has become more

important for tasks other than personal agents like Alexa,
and we now interact and collaborate with AIs; for example,
when sending text messages [24] and designing objects [16].
The hybrid existence and interaction of humans and AI is an
impressive topic, which can overcome social issues and im-
prove the quality of our lives. Glove Talk II [15], which was
presented in 1995, is a gesture-to-speech system that trans-
lates hand gestures into 10 control parameters of a speech
synthesizer using neural networks. However, to use the sys-
tem, the user requires a long-term training of approximately
100 hours. In the present study, referring to this work, we
apply the recently improved technologies of deep-neural
networks to create the hybrid interaction of humans and AI,
where the user (a human) learns to adapt and utilize the AI
system to achieve a better interaction.

3 SYSTEM ARCHITECTURE OF SOTTOVOCE
The architecture of the proposed system for generating sound
from ultrasonic images is shown in Figure 2. In general, the
goal of the system is to transfer certain sequence represen-
tations (in this case, ultrasonic images) into other sequence
representations (in this case, speech). This goal is similar
to that of text-to-speech systems [54], voice-transfer sys-
tems [2], and lip reading or face-to-voice systems [12]. In-
spired by these systems, the proposed system uses two neural
networks.
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Figure 2: SottoVoce system overview

Figure 3: Ultrasonic imaging probes

The first neural network (‘Network 1’ in Figure 2) transfers
a time series of ultrasonic images to a sound-representation
vector. We used a 64-dimensional Mel-scale spectrum with
the frequency range of 300 Hz to 8, 000 Hz, sampled every
20ms , as a sound-representation vector. Subsequently, the
translated sound representations constitute a series of sound-
representation vectors (i.e., a spectrogram). This sound spec-
trogram can be converted to an audio signal. In addition,
to refine the quality of those vectors, they are also trans-
ferred by the next neural network (“Network 2” in Figure 2),
which generates a series of sound-representation vectors of
the same length as that of the input sound-representation
vectors. Finally, the output vectors are converted to an actual
audio signal.
These two networks are speaker dependent; accordingly,

to train them, the system requires a set of ultrasonic-imaging
videos captured while the user speaks various speech com-
mands.

Ultrasonic Imaging Device
The CONTEC CMS600P2 Full Digital B-Ultrasound Diagnos-
tic System was used as the ultrasonic-imaging device. A user
attaches a 3.5-MHz convex-type ultrasonic imaging probe
under the jaw (Figure 3). This system provides a screen out-
put port to be connected to the display monitor. In addition,

Figure 4: Obtained ultrasonic image from probes attached to
the jaw from underneath.

a display-digitizing unit was used for converting the signal
sent to the display to an MPEG-4 movie file. Figure 4 shows
the obtained ultrasonic image.

We found a delay of ultrasonic images and sound captur-
ing. To compensate for this delay, we examined the corre-
sponding utterance and tongue movement in the video and
estimated a delay of 300ms . We subsequently adjusted to
this delay in the training data.

Network 1
Network 1 uses a series of K ultrasonic images (size of
128 × 128, monochrome) as the input and generates an n-
dimensional sound representation (Mel-scale spectrum) as
the output. Currently, K of 13 and n of 64 are used. Because
the frame rate of the ultrasonic images is 30 frames per sec-
ond, the duration of K ultrasonic images is thus 400 ms. This
time duration covers the static and motion features of the
utterance. Samples of the ultrasonic images are shown in
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Figure 5: A series of ultrasonic images of the throat of a subject about to pronounce “Alexa.”

Ultrasonic images

Audio feature vectors

time
20ms

1/30 sec

64

1

Figure 6: Representation of training data. K-sized ultra-
sonic images are pairedwith the corresponding sounds (Mel-
scaled sound vectors).

Figure 5. The K-size image sequence is prepared repeatedly
such that one Mel-scale spectrum is created every 20 ms (i.e.,
the hop size is 20 ms) (Figure 6).

A sound-representation vector corresponding to the time
position at the center of each ultrasonic-image sequence
is extracted from the audio signal data, and Network 1 is
trained to generate it.
Network 1 is based on a convolutional neural network

(CNN). It comprises four layers:Conv2D - LeakyReLU - Dropout
- BatchNormalization, followed by six layers: Flatten - Dense
- LeakyReLU - Dropout - Dense - LeakyReLU. The output
size of Network 1 is the same as the length of the sound-
representation vector (i.e., 64). Both input images and output
vectors are normalized to 0 to one, respectively. The loss
function is the mean-squared error, and the optimizer is
Adam [34].

Network 2
To improve the sound quality, Network 2 uses a sequence
of sound-representation vectors and generates a sequence
of sound-representation vectors with the same length as the
input. This model comprises a bank of one-dimensional (1-D)
convolutional filters (Conv1D), with a kernel size from 1 to
M (M = 8 is currently used), followed by the U-Network [46]
with the three layers of Conv1D - MaxPooling (strides=2) -
LeakyReLU - Dropout, and thrice of DeConv1D - Concatenate
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Figure 7: Network 2 improves the quality of generated Mel-
scaled spectrum sequences. (Note: for the consistency with
the illustration of the neural networks, the time axis of the
audio-feature vector is shown as the vertical axis.)

(Figure 7). The 1-D convolutional bank explicitly models
the local and contextual information of the input sequence.
The following U-Network also improves the quality of the
audio sequencewith precise localization. Finally, the network
generates Mel-scale spectrum vectors.
To train Network 2, Network 1 was used to create Mel-

scale spectrum vectors from the images of a training ultra-
sonic video clip as the input, and the same length Mel-scale
spectrum vectors from the audio of the same training video
clip as the output. Similarly, in the case of Network 1, the
mean-squared error was used as a loss function, and Adam
was used as an optimizer.

For simplicity, the time durations of the input and output
were fixed to the same value (currently, 3.68 s is used). This
duration encompasses many typical speech commands.

Sound generation
Following the neural-networks processing, a sequence of
Mel-scale-spectrum sound-representation vectors is converted
to an audio signal using the Griffin Lim algorithm [20]. This
conversion is possible from the output of Network 1 or the
output of Network 2.
For testing, the generated audio signals are transmitted

from an audio speaker, and they can be used to control nearby
sound-controlled devices such as a smart speaker. We are
also considering taking the audio-waveform signal directly



Figure 8: Apparatus used for training and evaluating.

as the audio input information of the speech-controllable
device without actually reproducing it as a sound wave.

Training
As for preparing the training data, two collaborators, (28-year
old male and 24-year old male) were attached with an ultra-
sonic imaging probe under their jaws, and were instructed to
utter various speech commands. Approximately 500 speech
commands were collected from each collaborator (Table ??).
For each command, as well as the voice utterance, a video of
the ultrasonic images was recorded. The training session was
approved by the research ethics committee of the author’s
institution.
The recorded video was used to train Network 1. The

ultrasonic images were rescaled to 128 × 128 and used as
inputs. The corresponding utterance voice was converted to
a Mel-scale spectrum and used as outputs.
The number of test sets for Network 2 was the same as

the number of trained video files (approximately 500). To
increase the number of test sets, data augmentation by apply-
ing Gaussian noise to the input Mel-scale spectrum vectors
was used.

As our model is speaker dependent, both Network 1 and
Network 2 are trained for each speaker. Network 1 is trained
first and subsequently used to create the dataset for training
Network 2.

Implementation Details
The above-described network models were implemented
based on the Keras [6] deep-learning platform with Tensor-
flow [1] as the backend, and an NVIDIAGeForce 1080ti as the
GPU board. Training Network 1 with 500 speech commands
(which creates 35,000 training data pairs for Network 1) re-
quired approximately 4 h. Training Network 2 required less
than an hour.

As the ultrasonic-imaging device cannot be connected di-
rectly to the Ubuntu machine that runs the neural networks,
a simple server–client program was developed. It connects
the computer that controls the ultrasonic imaging device to

the computer that operates the neural networks. The gen-
erated audio signals are sent back to the computer with the
ultrasonic-imaging device.
To process ultrasonic images at/with duration/intervals

of 3.68 s , 2.36 s is required for the neural networks to pro-
cess the images. The total processing time (including video
processing, neural networks processing, and conversion of
the Mel-scale spectrum to an audio wave) was 2.61 s .

4 RESULTS
The results of converting the ultrasonic images to sound are
shown in Figure 9. In the figure, the top-row graphs show the
sound-representation vectors (a Mel-scale spectrogram), and
the bottom-row graphs are the corresponding waveforms.
The graph labeled Net1 is the result of Network 1, that la-
beled Net2 is the result of Network 1 + Network 2, and that
labeled “original” is the wave data encoded as a Mel-scale
spectrogram and decoded back to the waveform. Thus, the
last one is regarded as the ground-truth of the training. Al-
though the difference between the outputs of Network 1
and Network 2 was unclear, we observed that the sound
generated by Network 2 was better than that generated by
Network 1 (Examples of the output audio signals are given
in the supplemental video.)

It is noteworthy that both Network 1 and Network 2 gen-
erate natural intonation, which is typically considered to be
caused by vocal-fold vibration, not by the internal situation.
This result might suggest that the neural networks learn the
context of the speech.

The generated sounds emitted from the computer’s speaker
were subsequently tested with an existing (unchanged) smart
speaker (Amazon Echo and Amazon Echo Show), and this
test confirmed that the generated sounds can control smart
speakers. The speech commands used for training and test-
ing were typical Amazon Alexa commands. For this test, the
participants spoke the following four commands, five times
each (20 utterances in total): “Alexa, play music,” “Alexa,
what’s the weather like,” “Alexa, what time is it,” and “Alexa,
play jazz.”
Table 1 lists the recognition success ratio of Network 1,

Network 1 + Network 2, and the original (Mel-scale encoded
and decoded) as a ground truth.We confirmed that the combi-
nation of Network 1 and Network 2 improves the recognition
rate.We also noticed that the trigger word (“Alexa”) is always
regenerated clearly. This may because that word is simply
the most pronounced word in the training set.

We also performed the word error rate (WER) measure test
using Google’s cloud speech-to-text engine [29] and the same
environment used for the recognition measurement of smart
speakers. The WER was 20.61%, 41.03%, and 33.56% for GT,
Network 1, and Network 2, respectively (mean of a total of 40
speech commands from two users from Table 1). We believe
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Figure 10: Comparison of Generated Sounds. Left: Network 2 results from ultrasonic images while a user is emitting a voice;
Middle: Network 2 results from ultrasonic images without emitting a voice; Right: the original (Mel-scale spectrogram en-
coded/decoded) voice

that this will also serve as evidence for the effectiveness of
Network 2. Through these studies, we found that commands
such as “what’s the weather like?” had a high recognition
rate for all conditions, while commands with shorter terms
such as “play jazz” performed much worse. This may suggest
that the longer commands are easier for Network 2 to obtain
the contexts.

User A User B ave.
Network 1 60.0% 25.0% 42.5%
Network 1 + Network 2 65.0% 65.0% 65.0%
GT 90.0% 90.0% 90.0%

Table 1: Speech-recognition success ratio in tests with
an unchanged existing smart speaker (“GT” means
Mel-scale encoded/decoded from the original voice
data, regarded as the ground truth of the training).



5 END-TO-END EVALUATION AND
OBSERVATIONS

The real end-to-end silent voice to audio conversion was
examined. In this case, a user is asked to mouth a speech
command without actually emitting a sound, and the oral
cavity movement is record by an ultrasonic imaging probe.
The obtained image sequence is subsequently translated to
a voice by the proposed system.
We asked the participants to speak as silently as possi-

ble (not to vibrate their vocal cords) and to try to speak as
similar as possible when they speak with sound. However,
we did not ask them to hold their breaths. Consequently, a
case occurred where a small leaked sound was audible. To
clarify this situation, we measured the level of the emitted
sound level from the participant by following the evalua-
tion method of SilentVoice [17]. We used a noise meter that
has the same specifications (min range 30 dB, 1.5 dB error)
placed 30 cm away, in a room with a background noise level
of 31.0 dB(A). The mean of the peak sound level of 20 mea-
surements (typical Alexa speech commands) was 37.14dB(A),
which is lower than that of soft whispering.

Figure 10 shows the comparison of the generated sound
when a user is emitting a voice and when a user is not emit-
ting a voice (please refer to the supplemental video for the
actual generated sounds).
Initially, the result was unsatisfactory. We first expected

that the movement in the oral cavity without emitting a
voice (Figure 10 (middle)) is the same as that when the user
actually emits a voice (Figure 10 (left)); however, a subtle
difference was found between them, and the sound quality
generated by the image-without-voice was not as good as
that generated by the image-with-voice.

However, the following interesting phenomenon was ob-
served. As the user can also listen to the generated sound
generated by the image-without-voice, the user attempted
to change the mouth movement to obtain a slightly better
result. After several trials, the quality of generated sound im-
proved. In this case, it is considered that the users improved
their own skills in silent voicing.

6 DISCUSSIONS
Incremental Voice Generation
In our current design, the obtained ultrasonic-image se-
quences were converted to a voice at the granularity of the
speech command (approximately 3.6 s). This is because Net-
work 2 uses a fixed-length voice-representation sequence.
However, based on the observation of the users’ practice, it
should be better to generate sounds incrementally, such that
the user can have a tighter feedback loop for learning oral
movements for generating a better voice.

Figure 11: Future Image: possible configuration of an ultra-
sonic probe and an open earphone

Continuous Ultrasonic-Wave Emission into the Body
The effect on human organs when ultrasonic waves are emit-
ted continuously into the body is unknown. However, we
may be able to combine a simple triggering mechanism to
start and stop the emission of ultrasonic waves. For example,
the combination of an accelerometer and a microphone in
the device can detect jaw movements for starting the (silent)
voice command without actually emitting a voice.

Cure for Vocal Cord Disabilities
We also expect people with damaged vocal cords to use our
research. As described in the Human–AI integration section,
people will be able to learn how to correctly control their
mouth and tongue to generate sound, even though their
vocal cords do not work.

Combining with Other Modalities
Finally, it should be mentioned that this research is not in-
tended to exclude other modalities. Combining the informa-
tion of EMG, accelerometers, and NAM microphones may
improve the quality of speech recognition. Investigating the
combination of these modalities is subject of future research.

Human–AI integration
The above-described observation suggests that an interesting
relationship exists between humans and AI. Rather than
considering AI as an autonomous or separated entity, wemay
be able to regard AI as a part of humans. Hence, even when
the initial performance of the (artificial) neural networks is
not perfect, a user can gradually learn and improve their
performance.
This is similar to how people learn fundamental skills.

When we learn utterance, the coordination of the motor
cortex that drives the oral cavity, tongue, and vocal folds,
and the auditory cortex forms a tight loop to obtain better
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taining better results.
speech performance (Figure 12 (a)). By extending this loop,
organic neural networks (e.g., our brain) and artificial neural
networks may also form a tight feedback loop (Figure 12
(b)). We name this formation, “human–AI integration” rather
than human–AI interaction.
In this regard, we refer to the research of Glove Talk II

from 1995 a pioneering work on human–AI integration [15].
In this work, the user learned to control a voice synthesizer
with hand gestures. Three simple neural networks were used,
and the user (who was a pianist) required more than 100 h
to generate an audible voice. A combination of better neural
networks and a learner could reduce this learning time.

7 CONCLUSION
A method of silent-voice interaction with ultrasonic imaging
was proposed. Two neural networks were used in sequence
to convert a mouthed “utterance” of a user without a voice
to a sound (voice), and could be used to operate the existing
voice-controllable devices such as smart speakers.

Following this result, we envision that the future form-
factor for the wearable computer would be a combination
of an attachable ultrasonic imaging probe to the underside
of the jaw, with a bone conductive earphone or an open-
air earphone (Figure 11). With this configuration, a user can
always invoke a voice-controllable assistantwithout emitting
a voice and obtain responses.
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